( function () { /** * Work based on : * https://github.com/Slayvin: Flat mirror for three.js * https://home.adelphi.edu/~stemkoski/ : An implementation of water shader based on the flat mirror * http://29a.ch/ && http://29a.ch/slides/2012/webglwater/ : Water shader explanations in WebGL */ class Water extends THREE.Mesh { constructor( geometry, options = {} ) { super( geometry ); this.isWater = true; const scope = this; const textureWidth = options.textureWidth !== undefined ? options.textureWidth : 512; const textureHeight = options.textureHeight !== undefined ? options.textureHeight : 512; const clipBias = options.clipBias !== undefined ? options.clipBias : 0.0; const alpha = options.alpha !== undefined ? options.alpha : 1.0; const time = options.time !== undefined ? options.time : 0.0; const wave_time = options.wave_time !== undefined ? options.wave_time : 0.0; const normalSampler = options.waterNormals !== undefined ? options.waterNormals : null; const sunDirection = options.sunDirection !== undefined ? options.sunDirection : new THREE.Vector3( 0.70707, 0.70707, 0.0 ); const sunColor = new THREE.Color( options.sunColor !== undefined ? options.sunColor : 0xffffff ); const waterColor = new THREE.Color( options.waterColor !== undefined ? options.waterColor : 0x7F7F7F ); const eye = options.eye !== undefined ? options.eye : new THREE.Vector3( 0, 0, 0 ); const distortionScale = options.distortionScale !== undefined ? options.distortionScale : 20.0; const side = options.side !== undefined ? options.side : THREE.FrontSide; const fog = options.fog !== undefined ? options.fog : false; // const mirrorPlane = new THREE.Plane(); const normal = new THREE.Vector3(); const mirrorWorldPosition = new THREE.Vector3(); const cameraWorldPosition = new THREE.Vector3(); const rotationMatrix = new THREE.Matrix4(); const lookAtPosition = new THREE.Vector3( 0, 0, - 1 ); const clipPlane = new THREE.Vector4(); const view = new THREE.Vector3(); const target = new THREE.Vector3(); const q = new THREE.Vector4(); const textureMatrix = new THREE.Matrix4(); const mirrorCamera = new THREE.PerspectiveCamera(); const renderTarget = new THREE.WebGLRenderTarget( textureWidth, textureHeight ); window.mirrorShader = { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ 'fog' ], THREE.UniformsLib[ 'lights' ], { 'normalSampler': { value: null }, 'mirrorSampler': { value: null }, 'alpha': { value: 1.0 }, 'time': { value: 0.0 }, 'wave_time': { value: 0.0 }, 'size': { value: 1.0 }, 'distortionScale': { value: 20.0 }, 'textureMatrix': { value: new THREE.Matrix4() }, 'sunColor': { value: new THREE.Color( 0x7F7F7F ) }, 'sunDirection': { value: new THREE.Vector3( 0.70707, 0.70707, 0 ) }, 'eye': { value: new THREE.Vector3() }, 'waterColor': { value: new THREE.Color( 0x555555 ) } } ] ), vertexShader: /* glsl */ ` uniform mat4 textureMatrix; uniform float time; uniform float wave_time; varying vec4 mirrorCoord; varying vec4 worldPosition; varying vec2 vUv; #include #include #include #include vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 mod289(vec4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 permute(vec4 x) { return mod289(((x*34.0)+1.0)*x); } vec4 taylorInvSqrt(vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; } float snoise(vec3 v) { const vec2 C = vec2(1.0/6.0, 1.0/3.0) ; const vec4 D = vec4(0.0, 0.5, 1.0, 2.0); // First corner vec3 i = floor(v + dot(v, C.yyy) ); vec3 x0 = v - i + dot(i, C.xxx) ; // Other corners vec3 g = step(x0.yzx, x0.xyz); vec3 l = 1.0 - g; vec3 i1 = min( g.xyz, l.zxy ); vec3 i2 = max( g.xyz, l.zxy ); // x0 = x0 - 0.0 + 0.0 * C.xxx; // x1 = x0 - i1 + 1.0 * C.xxx; // x2 = x0 - i2 + 2.0 * C.xxx; // x3 = x0 - 1.0 + 3.0 * C.xxx; vec3 x1 = x0 - i1 + C.xxx; vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y // Permutations i = mod289(i); vec4 p = permute( permute( permute( i.z + vec4(0.0, i1.z, i2.z, 1.0 )) + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) + i.x + vec4(0.0, i1.x, i2.x, 1.0 )); // Gradients: 7x7 points over a square, mapped onto an octahedron. // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) float n_ = 0.142857142857; // 1.0/7.0 vec3 ns = n_ * D.wyz - D.xzx; vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7) vec4 x_ = floor(j * ns.z); vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N) vec4 x = x_ *ns.x + ns.yyyy; vec4 y = y_ *ns.x + ns.yyyy; vec4 h = 1.0 - abs(x) - abs(y); vec4 b0 = vec4( x.xy, y.xy ); vec4 b1 = vec4( x.zw, y.zw ); //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0; //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0; vec4 s0 = floor(b0)*2.0 + 1.0; vec4 s1 = floor(b1)*2.0 + 1.0; vec4 sh = -step(h, vec4(0.0)); vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ; vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ; vec3 p0 = vec3(a0.xy,h.x); vec3 p1 = vec3(a0.zw,h.y); vec3 p2 = vec3(a1.xy,h.z); vec3 p3 = vec3(a1.zw,h.w); // Normalise gradients vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; // Mix final noise value vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0); m = m * m; return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), dot(p2,x2), dot(p3,x3) ) ); } void main() { mirrorCoord = modelMatrix * vec4( position, 1.0 ); worldPosition = mirrorCoord.xyzw; mirrorCoord = textureMatrix * mirrorCoord; vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 ); gl_Position = projectionMatrix * mvPosition; vUv = uv; vec3 pos = position; float noiseFreq = 3.5; float noiseAmp = 0.45; vec3 noisePos = vec3(pos.x * noiseFreq + time, pos.y, pos.z); pos.z += snoise(noisePos) * noiseAmp; gl_Position = projectionMatrix * modelViewMatrix * vec4(pos, 1.); #include #include #include #include #include }`, fragmentShader: /* glsl */ ` uniform sampler2D mirrorSampler; uniform float alpha; uniform float time; uniform float size; uniform float distortionScale; uniform sampler2D normalSampler; uniform vec3 sunColor; uniform vec3 sunDirection; uniform vec3 eye; uniform vec3 waterColor; varying vec4 mirrorCoord; varying vec4 worldPosition; vec4 getNoise( vec2 uv ) { vec2 uv0 = ( uv / 103.0 ) + vec2(time / 17.0, time / 29.0); vec2 uv1 = uv / 107.0-vec2( time / -19.0, time / 31.0 ); vec2 uv2 = uv / vec2( 8907.0, 9803.0 ) + vec2( time / 101.0, time / 97.0 ); vec2 uv3 = uv / vec2( 1091.0, 1027.0 ) - vec2( time / 109.0, time / -113.0 ); vec4 noise = texture2D( normalSampler, uv0 ) + texture2D( normalSampler, uv1 ) + texture2D( normalSampler, uv2 ) + texture2D( normalSampler, uv3 ); return noise * 0.5 - 1.0; } void sunLight( const vec3 surfaceNormal, const vec3 eyeDirection, float shiny, float spec, float diffuse, inout vec3 diffuseColor, inout vec3 specularColor ) { vec3 reflection = normalize( reflect( -sunDirection, surfaceNormal ) ); float direction = max( 0.0, dot( eyeDirection, reflection ) ); specularColor += pow( direction, shiny ) * sunColor * spec; diffuseColor += max( dot( sunDirection, surfaceNormal ), 0.0 ) * sunColor * diffuse; } #include #include #include #include #include #include #include #include void main() { #include vec4 noise = getNoise( worldPosition.xz * size ); vec3 surfaceNormal = normalize( noise.xzy * vec3( 1.5, 1.0, 1.5 ) ); vec3 diffuseLight = vec3(0.0); vec3 specularLight = vec3(0.0); vec3 worldToEye = eye-worldPosition.xyz; vec3 eyeDirection = normalize( worldToEye ); sunLight( surfaceNormal, eyeDirection, 100.0, 2.0, 0.5, diffuseLight, specularLight ); float distance = length(worldToEye); vec2 distortion = surfaceNormal.xz * ( 0.001 + 1.0 / distance ) * distortionScale; vec3 reflectionSample = vec3( texture2D( mirrorSampler, mirrorCoord.xy / mirrorCoord.w + distortion ) ); float theta = max( dot( eyeDirection, surfaceNormal ), 0.0 ); float rf0 = 0.3; float reflectance = rf0 + ( 1.0 - rf0 ) * pow( ( 1.0 - theta ), 5.0 ); vec3 scatter = max( 0.0, dot( surfaceNormal, eyeDirection ) ) * waterColor; vec3 albedo = mix( ( sunColor * diffuseLight * 0.3 + scatter ) * getShadowMask(), ( vec3( 0.1 ) + reflectionSample * 0.9 + reflectionSample * specularLight ), reflectance); vec3 outgoingLight = albedo; gl_FragColor = vec4( outgoingLight, alpha ); #include #include }` }; const material = new THREE.ShaderMaterial( { fragmentShader: mirrorShader.fragmentShader, vertexShader: mirrorShader.vertexShader, uniforms: THREE.UniformsUtils.clone( mirrorShader.uniforms ), lights: true, side: side, fog: fog } ); material.uniforms[ 'mirrorSampler' ].value = renderTarget.texture; material.uniforms[ 'textureMatrix' ].value = textureMatrix; material.uniforms[ 'alpha' ].value = alpha; material.uniforms[ 'time' ].value = time; material.uniforms[ 'wave_time' ].value = time; material.uniforms[ 'normalSampler' ].value = normalSampler; material.uniforms[ 'sunColor' ].value = sunColor; material.uniforms[ 'waterColor' ].value = waterColor; material.uniforms[ 'sunDirection' ].value = sunDirection; material.uniforms[ 'distortionScale' ].value = distortionScale; material.uniforms[ 'eye' ].value = eye; scope.material = material; scope.onBeforeRender = function ( renderer, scene, camera ) { mirrorWorldPosition.setFromMatrixPosition( scope.matrixWorld ); cameraWorldPosition.setFromMatrixPosition( camera.matrixWorld ); rotationMatrix.extractRotation( scope.matrixWorld ); normal.set( 0, 0, 1 ); normal.applyMatrix4( rotationMatrix ); view.subVectors( mirrorWorldPosition, cameraWorldPosition ); // Avoid rendering when mirror is facing away if ( view.dot( normal ) > 0 ) return; view.reflect( normal ).negate(); view.add( mirrorWorldPosition ); rotationMatrix.extractRotation( camera.matrixWorld ); lookAtPosition.set( 0, 0, - 1 ); lookAtPosition.applyMatrix4( rotationMatrix ); lookAtPosition.add( cameraWorldPosition ); target.subVectors( mirrorWorldPosition, lookAtPosition ); target.reflect( normal ).negate(); target.add( mirrorWorldPosition ); mirrorCamera.position.copy( view ); mirrorCamera.up.set( 0, 1, 0 ); mirrorCamera.up.applyMatrix4( rotationMatrix ); mirrorCamera.up.reflect( normal ); mirrorCamera.lookAt( target ); mirrorCamera.far = camera.far; // Used in WebGLBackground mirrorCamera.updateMatrixWorld(); mirrorCamera.projectionMatrix.copy( camera.projectionMatrix ); // Update the texture matrix textureMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 ); textureMatrix.multiply( mirrorCamera.projectionMatrix ); textureMatrix.multiply( mirrorCamera.matrixWorldInverse ); // Now update projection matrix with new clip plane, implementing code from: http://www.terathon.com/code/oblique.html // Paper explaining this technique: http://www.terathon.com/lengyel/Lengyel-Oblique.pdf mirrorPlane.setFromNormalAndCoplanarPoint( normal, mirrorWorldPosition ); mirrorPlane.applyMatrix4( mirrorCamera.matrixWorldInverse ); clipPlane.set( mirrorPlane.normal.x, mirrorPlane.normal.y, mirrorPlane.normal.z, mirrorPlane.constant ); const projectionMatrix = mirrorCamera.projectionMatrix; q.x = ( Math.sign( clipPlane.x ) + projectionMatrix.elements[ 8 ] ) / projectionMatrix.elements[ 0 ]; q.y = ( Math.sign( clipPlane.y ) + projectionMatrix.elements[ 9 ] ) / projectionMatrix.elements[ 5 ]; q.z = - 1.0; q.w = ( 1.0 + projectionMatrix.elements[ 10 ] ) / projectionMatrix.elements[ 14 ]; // Calculate the scaled plane vector clipPlane.multiplyScalar( 2.0 / clipPlane.dot( q ) ); // Replacing the third row of the projection matrix projectionMatrix.elements[ 2 ] = clipPlane.x; projectionMatrix.elements[ 6 ] = clipPlane.y; projectionMatrix.elements[ 10 ] = clipPlane.z + 1.0 - clipBias; projectionMatrix.elements[ 14 ] = clipPlane.w; eye.setFromMatrixPosition( camera.matrixWorld ); // Render const currentRenderTarget = renderer.getRenderTarget(); const currentXrEnabled = renderer.xr.enabled; const currentShadowAutoUpdate = renderer.shadowMap.autoUpdate; scope.visible = false; renderer.xr.enabled = false; // Avoid camera modification and recursion renderer.shadowMap.autoUpdate = false; // Avoid re-computing shadows renderer.setRenderTarget( renderTarget ); renderer.state.buffers.depth.setMask( true ); // make sure the depth buffer is writable so it can be properly cleared, see #18897 if ( renderer.autoClear === false ) renderer.clear(); renderer.render( scene, mirrorCamera ); scope.visible = true; renderer.xr.enabled = currentXrEnabled; renderer.shadowMap.autoUpdate = currentShadowAutoUpdate; renderer.setRenderTarget( currentRenderTarget ); // Restore viewport const viewport = camera.viewport; if ( viewport !== undefined ) { renderer.state.viewport( viewport ); } }; } } THREE.Water = Water; } )();